目前替换策略有四种算法:
随机算法
双向链表python实现
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 
 | class Node:def __init__(self, key, value):
 self.key = key
 self.value = value
 self.prev = None
 self.next = None
 
 def __str__(self):
 val = f'{{{self.key} : {self.value}}}'
 return val
 
 def __repr__(self):
 val = f'{{{self.key} : {self.value}}}'
 return val
 
 
 class DoubleLinkedList:
 def __init__(self, capaity=0xffff):
 self.capaity = capaity
 self.head = None
 self.tail = None
 self.size = 0
 
 
 def add_head(self, node: Node):
 if not self.head:
 self.head = node
 self.tail = node
 self.head.next = None
 self.head.prev = None
 else:
 node.next = self.head
 self.head.prev = node
 self.head = node
 self.head.prev = None
 self.size += 1
 return node
 
 
 def add_tail(self, node: Node):
 if not self.tail:
 self.tail = node
 self.head = node
 self.tail.next = None
 self.tail.prev = None
 else:
 self.tail.next = node
 node.prev = self.tail
 self.tail = node
 self.tail.next = None
 self.size += 1
 return node
 
 
 def del_tail(self):
 if not self.tail:
 return
 node = self.tail
 if node.prev:
 self.tail = node.prev
 self.tail.next = None
 else:
 self.tail = self.head = None
 self.size -= 1
 return node
 
 
 def del_head(self):
 if not self.head:
 return
 node = self.head
 if node.next:
 self.head = node.next
 self.head.prev = None
 else:
 self.tail = self.head = None
 self.size -= 1
 return node
 
 
 def remove(self, node: Node):
 
 if not node:
 node = self.tail
 if node == self.tail:
 self.__del_tail()
 elif node == self.head:
 self.__del_head()
 else:
 node.prev.next = node.next
 node.next.prev = node.prev
 self.size -= 1
 return node
 
 def print(self):
 p = self.head
 line = ""
 while p:
 line += "%s" % p
 p = p.next
 if p:
 line += "=>"
 print(line)
 
 | 
先进先出算法(FIFO)
✦把缓存看作是一个先进先出的队列
✦优先替换最先进入队列的字块

python 实现代码
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 
 | from DoubleLinkedList import DoubleLinkedList, Node
 
 class FIFOCache():
 def __init__(self, capacity):
 self.capacity = capacity
 self.size = 0
 self.map = {}
 self.list = DoubleLinkedList(self.capacity)
 
 def get(self, key):
 if key not in self.map:
 return -1
 else:
 node: Node = self.map.get(key)
 return node.value
 
 def put(self, key, value):
 if self.capacity == 0:
 return "容量为0"
 if key in self.map:
 node: Node = self.map.get(key)
 self.list.remove(node)
 node.value = value
 self.list.add_tail(node)
 else:
 if self.size == self.capacity:
 node = self.list.del_tail()
 del self.map[node.key]
 self.size -= 1
 node = Node(key, value)
 self.list.add_tail(node)
 self.map[key] = node
 self.size += 1
 
 def print(self):
 return self.list.print()
 
 | 
最不经常使用算法(LFU)
✦优先淘汰最不经常使用的字块
✦需要额外的空间记录字块的使用频率
✦ 同频率节点按FIFO算法淘汰


| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 
 | from DoubleLinkedList import DoubleLinkedList, Node
 
 class LFUNode(Node):
 def __init__(self, key, value):
 self.freq = 0
 super(LFUNode, self).__init__(key, value)
 
 
 class LFUCache():
 def __init__(self, capacity):
 self.capacity = capacity
 self.map = {}
 
 self.freq_map = dict()
 self.size = 0
 
 
 def update_freq(self, node: LFUNode):
 freq = node.freq
 
 node = self.freq_map[freq].remove(node)
 if self.freq_map[freq].size == 0:
 del self.freq_map[freq]
 
 freq += 1
 node.freq = freq
 if freq not in self.freq_map:
 self.freq_map[freq] = DoubleLinkedList()
 self.freq_map[freq].add_tail(node)
 
 def get(self, key):
 if key not in self.map:
 return -1
 node = self.map.get(key)
 self.update_freq(node)
 return node.value
 
 def put(self, key, value):
 if self.capacity == 0:
 return "容量为0"
 
 if key in self.map:
 node = self.map.get(key)
 node.value = value
 self.update_freq(node)
 
 else:
 if self.capacity == self.size:
 min_freq = min(self.freq_map)
 node = self.freq_map[min_freq].del_tail()
 del self.map[node.key]
 self.size -= 1
 
 node = LFUNode(key, value)
 node.freq = 1
 self.map[key] = node
 if node.freq not in self.freq_map:
 self.freq_map[node.freq] = DoubleLinkedList()
 node = self.freq_map[node.freq].add_tail(node)
 self.size += 1
 
 def print(self):
 print("***************")
 for k, v in self.freq_map.items():
 print(f"频率= {k}")
 self.freq_map[k].print()
 
 | 
最近最少使用算法(LRU)
✦优先淘汰一段时间内没有使用的字块
✦有多种实现方法,一般使用双向链表
✦把当前访问节点置于链表前面(保证链表头部节点是最近使用的)
✦缓存淘汰时,把链表尾部的节点淘汰即可

python 代码实现
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 
 | from DoubleLinkedList import DoubleLinkedList, Node
 class LRUCache():
 def __init__(self, capacity):
 self.capacity = capacity
 self.map = {}
 self.list = DoubleLinkedList(self.capacity)
 
 def get(self, key):
 if key in self.map:
 node: Node = self.map[key]
 self.list.remove(node)
 self.list.add_head(node)
 return node.value
 else:
 return -1
 
 def put(self, key, value):
 if key in self.map:
 node: Node = self.map.get(key)
 self.list.remove(node)
 node.value = value
 self.list.add_head(node)
 else:
 node = Node(key, value)
 
 if self.list.capacity <= self.list.size:
 old_node = self.list.del_tail()
 self.map.pop(old_node.key)
 
 
 self.list.add_head(node)
 self.map[key] = node
 
 def print(self):
 self.list.print()
 
 | 
LRU  问题:时间复杂度? 多线程下怎么优化?